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Increasing Accuracy of Vehicle Detection from Conventional Vehicle 
Detectors- Counts, Speeds, Classification, and Travel Time 

Introduction 
Vehicle classification is an important traffic parameter for transportation planning and infrastructure 
management. Length-based vehicle classification from dual loop detectors is among the lowest cost 
technologies commonly used for collecting these data. Like many vehicle classification technologies, the 
dual loop approach works well in free flow traffic. Effective vehicle lengths are measured from the 
quotient of the detector dwell time and vehicle traversal time between the paired loops. This approach 
implicitly assumes that vehicle acceleration is negligible, but unfortunately at low speeds this 
assumption is invalid and length-based classification performance degrades in congestion.  

To addresses this problem, we seek a solution that relies strictly on the measured effective vehicle 
length and measured speed. We analytically evaluate the feasible range of true effective vehicle lengths 
that could underlie a given combination of measured effective vehicle length, measured speed, and 
unobserved acceleration at a dual loop detector. From this analysis we find that there are small 
uncertainty zones where the measured length class can differ from the true length class, depending on 
the unobserved acceleration. In other words, a given combination of measured speed and measured 
effective vehicle length falling in the uncertainty zones could arise from vehicles with different true 
length classes. Outside of the uncertainty zones, any error in the measured effective vehicle length due 
to acceleration will not lead to an error in the measured length class. Thus, by mapping these 
uncertainty zones, most vehicles can be accurately sorted to a single length class, while the few vehicles 
that fall within the uncertainty zones are assigned to two or more classes. We find that these 
uncertainty zones remain small down to about 10 mph and then grow exponentially as speeds drop 
further.  

Using empirical data from stop-and-go traffic at a well-tuned loop detector station the best conventional 
approach does surprisingly well; however, our new approach does even better, reducing the 
classification error rate due to acceleration by at least a factor of four relative to the best conventional 
method. Meanwhile, our approach still assigns over 98% of the vehicles to a single class. 
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Findings 
Dual loop detectors are among the lowest cost technologies commonly used for collecting vehicle 
classification data. The conventional approach to classify vehicles at dual loop detectors implicitly 
assumes that vehicle acceleration is negligible; but unfortunately, at low speeds this assumption is 
invalid. As a result of this fact, many operating agencies are reluctant to deploy classification stations on 
roadways where traffic is frequently congested. 

This work sought to address the impacts of the unobserved acceleration on the measured length class. 
After calibration, the approach relies strictly on the measured effective vehicle length and measured 
speed at a conventional dual loop detector. To this end, the work established the uncertainty regions 
where the true vehicle class is ambiguous based on what can actually be measured from a dual loop 
detector. Using the equations of motion this work analytically derived the set of true vehicle lengths, 
speeds, and accelerations that could give rise to a particular combination of measured speed and 
measured effective vehicle length. Of course acceleration cannot be measured from conventional dual 
loop detectors and this analysis found that there are small uncertainty zones where the measured 
length class can differ from the true length class, depending on the unobserved acceleration. In other 
words, a given combination of measured speed and measured effective vehicle length falling in the 
uncertainty zones could arise from vehicles with different true length classes. In other words, the 
uncertainty zones capture the impacts of the unmeasured acceleration. Outside of the uncertainty 
zones, any error in the measured effective vehicle length due to acceleration will not lead to an error in 
the measured length class. Thus, by mapping these uncertainty zones, most vehicles can be accurately 
sorted to a single length class, while the few vehicles that fall within the uncertainty zones are assigned 
to two or more classes. Using empirical data from stop-and-go traffic we found that this new approach 
assigns over 98% of the vehicles to a single class, and reduces the classification error rate by at least a 
factor of four relative to the best conventional constant speed boundary method. 

Contrary to conventional wisdom we found that the conventional, constant speed boundaries 
performed surprisingly well down to 15 mph for both of the empirical evaluation datasets.  

The uncertainty zone method presented in this work is meant to extend meaningful length-based 
vehicle classification to sites that see some congestion. Reviewing the data, the stop case and even 
some of the low speed, non-constant acceleration cases can yield very large errors in the measured 
effective vehicle lengths. Fortunately, these errors are somewhat rare for several reasons, first, very few 
vehicles actually pass the dual loop detector at these low speeds, since the lower the speed the lower 
the flow and the lower the flow the fewer vehicles actually pass a detector. Second, as shown in the 
report, the uncertainty zones only impact measured effective vehicle lengths above 26 ft. There is no 
uncertainty for any vehicles with a measured effective vehicle length below the zones, no matter how 
low the measured speed is. Meanwhile, for a measured speed below 8 mph, the work found that almost 
all measured effective vehicle lengths above 26 ft will fall in the uncertainty zones. 
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Recommendations 
The present work seeks to demonstrate just how small the uncertainty zones are. It is left to future work 
to derive a universal expression to specify the uncertainty zone boundaries for different length bins or 
dual loop detector spacing. Although we found slightly higher error rates when using the real loop 
detector data than the purely synthetic data, the difference was very small, i.e., the performance from 
the NGSIM synthetic transition times was similar to those from the well tuned loop detectors in the 
Berkeley Highway Laboratory. So for some other set of length bins and dual loop spacing, one could 
simply repeat the analytical processed developed in this report and evaluate the results strictly using the 
NGSIM data. While our work only used the NGSIM I-80 dataset due to the overlap with the BHL, there is 
a second NGSIM freeway dataset from US-101 that could also be used. In either case, the NGSIM data 
come from urban freeways with the majority of vehicles being passenger cars. Fortunately, the 
classification of one vehicle is independent of the classification of another vehicle at a well tuned 
detector. So if one were interested strictly in the longer vehicles, one could simply discount the class 1 
vehicles. To increase the proportion of observations arising from long vehicles, the simulated loop 
detectors could be deployed at multiple locations along one of the NGSIM corridors to generate the 
synthetic transition data in an effort to sample the limited number of trucks under different acceleration 
conditions. 
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CHAPTER 1.  INTRODUCTION 

Vehicle classification is an important traffic parameter for transportation planning 

and infrastructure management. Length-based vehicle classification from dual loop 

detectors is among the lowest cost technologies commonly used for collecting these data. 

A dual loop detector station typically consists of a pair of loop detectors separated by a 

known distance in each lane. In conventional practice, speed is the quotient of this known 

distance between the loop detectors and a given vehicle's measured traversal time 

between the paired detectors. The product of this speed measurement and the dwell time 

over one of the detectors is then used to calculate the effective vehicle length (where the 

effective vehicle length is the sum of the physical vehicle length and the size of the loop's 

detection zone). Finally, to classify the vehicle, each of these effective vehicle length 

measurements is then sorted into one of several different length bins, e.g., a three bin 

scheme might seek to sort passenger vehicles, single unit trucks, and multiple unit trucks 

into different bins. 

Like many vehicle classification technologies, the dual loop approach works well 

in free flow traffic (Davies and Salter, 1983; Minge et al., 2012; Kim and Coifman, 

2013). This approach implicitly assumes that vehicle acceleration is negligible; but 

unfortunately, at low speeds this assumption is invalid (e.g., Wu and Coifman, in press) 

and performance degrades significantly in congestion (Davies and Salter, 1983; Wu and 

Coifman, in press). As a result of this fact, many operating agencies are reluctant to 

deploy classification stations on roadways where traffic is frequently congested.  

To addresses this problem, we seek a solution that relies strictly on the measured 

effective vehicle length and measured speed. We first use the equations of motion to 
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synthesize hypothetical loop detector data and evaluate the feasible range of true effective 

vehicle lengths that could underlie a given combination of measured effective vehicle 

length and measured speed at a dual loop detector as the unobserved acceleration is 

varied. From this analysis we find that there are small uncertainty zones where the 

measured length class can differ from the true length class, depending on the unobserved 

acceleration. In other words, a given combination of measured speed and measured 

effective vehicle length falling in the uncertainty zones could arise from vehicles with 

different true length classes. Outside of the uncertainty zones, any error in the measured 

effective vehicle length due to acceleration will not lead to an error in the measured 

length class. Thus, by mapping these uncertainty zones, most vehicles can be accurately 

sorted to a single length class, while the few vehicles that fall within the uncertainty 

zones are assigned to two or more classes. We find that these uncertainty zones remain 

small down to about 10 mph and then grow exponentially as speeds drop further. Then 

using empirical data from stop-and-go traffic we evaluate the performance of this new 

approach, first via synthetic detector data, and then using data from a real dual loop 

detector station. 

The remainder of this section briefly reviews the conventional dual loop detector 

effective vehicle length measurement and vehicle classification used in this work. As 

noted above, this conventional method for measuring effective vehicle length assumes 

that acceleration is negligible. Section 2 uses the equations of motion to evaluate the 

impacts of unaccounted for acceleration and complete stops on the conventional effective 

vehicle length measurement. The section generates synthetic vehicle trajectories and then 

finds the pairwise combinations of measured effective vehicle length and measured speed 

from a simulated dual loop detector to identify the uncertainty zones where the 

unaccounted for acceleration can cause the measured effective vehicle length to result in 

a different classification than the true effective vehicle length would fall in. Once the 

uncertainty zones have been established, deviating from conventional practice, 

measurements that fall in these zones are assigned either two or three possible vehicle 

classes that correspond to the given uncertainty zone. Section 3 evaluates the 
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performance of the new methodology using empirical data. Finally, this report closes 

with a discussion and conclusions in Section 4. 

1.1 Effective Vehicle Length Measurement and Length Classes 

Figure 1.1 shows the time-space representation of a vehicle passing over a dual 

loop detector, with the paired loops separated by spacing S (leading edge to leading 

edge). The loop detector controller records four transition times, denoted t1 to t4, as the 

vehicle enters and leaves the two detection zones. From which the controller then 

calculates the traversal times from the rising edges, TT! = t! − t!, and falling edges, 

TT! = t! − t!, which in turn yield two separate measures of speed: V!   =   S/TT! and 

V!   =   S/TT! . Similarly, there are two measures dwell time: over the first detector, 

T! = t! − t!, and second detector, T! = t! − t!, as shown in the figure. As discussed in 

Wu and Coifman (in press), in conventional practice there are several different ways of 

averaging these speeds and dwell times to calculate the effective vehicle length. This 

earlier work evaluated the various combinations in the presence of accelerations and 

found the method from Coifman and Cassidy (2002) (denoted CM+ and given by 

Equation 1) proved to be the most robust variant of the conventional method during stop-

and-go traffic conditions. Note that the "+" suffix denotes the fact that CM+ is already 

better than the most commonly used conventional approach, CM, that uses just one pair 

of the speed and dwell time measurements, as given by Equation 2. Wu and Coifman 

found that the length-based classification error rate from CM+ was roughly half that of 

CM. 

L!"! =
!!∗!!!!!∗!!

!
 (1) 

L!" = V! ∗ T!  or  L!" = V! ∗ T! (2) 

In this work, for illustration purposes we adopt the classification length bins 

commonly used by the Ohio Department of Transportation (ODOT), as discussed in 

Coifman and Kim (2009), and repeated below. Meanwhile, Section 4 will discuss how to 

extend this work to other length bins. 
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Class 1: 0 feet < effective vehicle length ≤ 28 feet 

Class 2: 28 feet< effective vehicle length ≤ 46 feet 

Class 3: effective vehicle length > 46 feet 
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Figure 1.1. Schematic of a vehicle passing over a dual detector showing the four 

transition times that comprise the response of the two detectors and the resulting 

measurements used to calculate speed and length. 
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CHAPTER 2.  VEHICLE CLASSIFICATION IN THE PRESENCE OF 

ACCELERATION 

As noted above, the conventional method for measuring effective vehicle length 

assumes that acceleration is negligible. In the following subsections we investigate the 

impacts of the unaccounted for acceleration using the equations of motion to synthesize 

hypothetical loop detector data and evaluate the feasible range of true effective vehicle 

lengths that could underlie a given combination of measured effective vehicle length, 

measured speed, and unobserved acceleration at a dual loop detector. We evaluate four 

specific vehicular movements: constant speed, constant acceleration, non-constant 

acceleration, and coming to a complete stop. In each case we investigate the impacts the 

given vehicle movement will have on the effective vehicle length measurement from 

Equation 1, with specific attention to the situations where the resulting measured length 

class can differ from the true length class. Each of these four movement models is first 

considered individually, and then we combine the results to establish the boundaries of 

the classification uncertainty zones. For each of the movement models we choose a 

vehicle's true effective vehicle length, initial speed, and acceleration profile; synthesized 

the resulting transition times shown in Figure 1.1; calculated the average measured speed 

from Equation 3 and effective vehicle length from Equation 1; and then compared the 

measured length class to the true length class. We present the results in the measured 

effective vehicle length versus measured speed plane to put them in the context of metrics 

that can be measured directly at conventional dual loop detectors. In most cases it is 

sufficient to evaluate the boundary values between vehicle classes, i.e., 28 ft and 46 ft 

used in this report. 
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V = !!!!!
!

 (3) 

2.1 Establishing the Range of Acceleration 

To establish the range of reasonable acceleration for this work, we employ one of 

the Next Generation Simulation (NGSIM) datasets. The NGSIM program was initiated 

by the Federal Highway Administration (FHWA) to collect high-quality, empirical 

vehicle trajectory data to support the development of better traffic simulation (Kovvali et 

al., 2007). In particular, we use the I-80 dataset, which includes vehicle trajectories on a 

1,650 ft long segment of I-80 in Emeryville, California for 45 min during the evening 

peak on April 13, 2005. Figure 2.1 shows the probability mass function of the 

accelerations recorded for all vehicles, at all locations in the NGSIM dataset. Over 70% 

of the accelerations range from -2mphps to 2 mphps, and over 50% range from -1 to +1 

mphps. In fact there is considerable evidence in the literature to suggest that the 

magnitudes of the NGSIM accelerations are too large, e.g., Punzo et al (2011). 

Montanino and Punzo (2013) found that after correcting the NGSIM I-80 dataset, roughly 

90% of the accelerations fell within ±2 mphps. So in the following sections we use a = ±1 

mphps or a = ±2 mphps as our reference values. 

2.2 Measured Class Boundaries Given a Constant Speed 

The simplest vehicle motion is the constant speed model, whereby the vehicle 

passes a dual loop detector with a constant speed. In this case, there is no acceleration and 

the vehicle does not stop while traversing the detector, thus V! = V! and T! = T!. So the 

measured effective vehicle length from Equation 1 should equal the true effective vehicle 

length for the given vehicle. Therefore, under constant speed the boundaries between 

measured length classes are equal to the boundaries between the true length classes for all 

measured speeds. The bold lines in Figure 2.2a show these boundaries between the 

measured length classes. 
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2.3 Measured Class Boundaries Given a Non-Stop Constant Acceleration 

The simplest vehicle motion that includes acceleration is one of constant 

acceleration, with no stops over the dual detector. For the boundary between class 1 and 2 

we set the true effective vehicle length, Le, to be 28 ft, and for the boundary between 

class 2 and 3 we set Le to be 46 ft. Setting the loop spacing, S, to be 20 ft, we vary the 

true initial speed, V0, from 0 to 100 mph, at ΔV = 0.1 mph increments, and set 

acceleration, a, to +2 mphps and -2 mphps. Synthesizing the detector transition times 

from Figure 1.1, then calculating the measured speed from Equation 3 and measured 

effective vehicle length from Equation 1, the bold curves in Figure 2.2b show how the 

boundary curves between the true length classes are pulled to shorter effective vehicle 

lengths as speeds approach the stop region in the presence of a constant acceleration. 

These curves are truncated when they hit the shaded region, denoting the threshold where 

the given vehicle would come to (or start from) a stop at the given acceleration. Note that 

the average measured speed differs from V0, and in this case positive and negative 

accelerations both lead to very similar boundary curves. Within the non-stop region the 

resulting error in the boundary curve from the measured effective vehicle length is small 

down to 10 mph and then starts to grow as the average speed drops, until reaching the 

edge of the stop region. The general shape of the boundaries between classes and the 

threshold of the stop region remain the same at different values of |a|, but as |a| shrinks, 

the associated speeds also drop, and the curves compress to the left. 

2.4 Measured Class Boundaries Given a Non-constant Acceleration 

To capture the non-constant acceleration case we use a piecewise linear 

acceleration profile as shown in Figure 2.3a for a given vehicle passing over the dual loop 

detector. This model is characterized by the accelerations, ai and aj; initial speed, V0; and 

the speed at the inflection point, Vx; while the two time periods, ti and tj denote the time 

spent by the vehicle during the given acceleration and can be expressed as a function of 

the other variables. For illustrative purposes we consider the four following 

combinations:  
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scenario 1, ai = 1 mphps, and aj = 2 mphps;  

scenario 2, ai = 2 mphps, and aj = -2 mphps;  

scenario 3, ai = -2 mphps, and aj = 2 mphps; and 

scenario 4, ai = -1 mphps, and aj = -2 mphps. 

In this model we set ti = tj and vary Vx from 0 to 100 mph, at ΔV = 0.1 mph 

increments (excluding all combinations that would yield a negative V0 or final speed at 

time tf in Figure 2.3a). Hence, for each case the initial speed V0 is calculated from ai, aj, 

Le, S and Vx, and once more we synthesize the detector transition times. Figure 2.2c 

shows the range of outcomes from the two boundary curves, mapping out an uncertainty 

zone between the distinctly discernable length classes. For both uncertainty zones the top 

right of the zone comes primarily from scenario 2, the lower edge of the zone arises 

primarily from scenarios 1 and 4, and the left edge of the uncertainty zone from scenario 

3, corresponding to the edge of the stop region when Vx =0.1 So in this case, at 20 mph 

the lower uncertainty zone exhibits a range of 1.2 ft and the upper uncertainty zone 

exhibits a range of 1.9 ft. At 15 mph these zones grow to 2.0 ft and 3.8 ft, respectively. 

The top of the uncertainty zones quickly exceeds the maximum feasible vehicle length as 

speeds drop further, and in the case of the lower zone actually bends back towards higher 

measured speeds at longer measured effective vehicle lengths. 

2.5 Measured Class Boundaries Given a Stop Over the Dual Loop Detector 

So far we have considered acceleration in the absence of stops, but in stop-and-go 

traffic, vehicles will stop over the dual loop detector. Because Le > S for both boundaries, 

when one of these vehicles stop it will do so over one or both of the loop detectors. First, 

consider the case where the vehicle stops over the upstream detector, before reaching the 

downstream detector. In the context of Figure 1.1, t1 will move to the left by the duration 

of the stop time, impacting both TTr and Tu. In this case the effective vehicle length 

measurement error will be relatively small because these extensions from the stop time 
                                                
1 Because this plot uses four different combinations of accelerations, the stop region boundary is no longer a well-

defined curve, as it was in Figure 2.2b 
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partially cancel each other out via CM+ in Equation 1. On the other hand if the vehicle 

stops over both detectors, both t1 and t3 will move to the left by the duration of the stop 

time.2 So now both dwell times will be extended by the stop time, but neither traversal 

time will include the stop time. This imbalance will lead to a large error by CM+ in 

Equation 1 and the measured effective vehicle length will be much longer than the true 

effective vehicle length. Similarly, if one only used CM from Equation 2, the errors can 

also persist when a vehicle stops over just one detector. 

Extending the non-constant acceleration model to include a stop time, we use the 

piecewise linear acceleration profile shown in Figure 2.3b for a vehicle stopping over the 

dual loop detector at the worst possible location relative to the loops, i.e., with the vehicle 

stopped over both loops and centered relative to the two loops. The only things that we 

change from Section 2.4 is the addition of the stop time, Δt, we only consider the stop 

region (Vx=0), and now we only use scenario 3 because it traces out the lower bound of 

the uncertainty zones. The bold curves in Figure 2.2d show the case when ∆𝑡 = 0, which 

means the vehicle comes to a complete stop over the detection zone and then immediately 

accelerates away. For speeds just below the right hand edge of the stop region we see the 

boundary drops to the lowest measured effective vehicle length and then quickly shoots 

up beyond the largest feasible vehicle (while also moving to higher average measured 

vehicle speed). Keep in mind that this is the lower bound of the class above for the given 

acceleration profile, with the upper bound already being established in Figure 2.2c. For 

longer Δt the two boundaries in Figure 2.2d shift to lower measured speeds and effective 

vehicle lengths.  

After including non-zero stop times and vehicles that come to a stop over just one 

loop, most measurements falling in the stop region with measured effective vehicle 

length between 26 ft and 42 ft could come either from a class 1 or class 2 vehicle, while a 

measured effective vehicle length above 42 ft could come from a vehicle in any one of 

the three classes. 

                                                
2 Note that Figure 1.1 illustrates the case with Le < S, t2 and t3 will swap their temporal order whenever Le > S. 
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2.6 Class Boundaries without Knowledge of the Acceleration 

Figure 2.4b shows the intersection of all of the boundaries from Figure 2.2, with 

𝑎 = 2  𝑚𝑝ℎ𝑝𝑠. Figure 2.4a repeats this analysis except now 𝑎 = 1  𝑚𝑝ℎ𝑝𝑠 and Figure 

2.4c repeats in analysis with 𝑎 = 4  𝑚𝑝ℎ𝑝𝑠. The three plots exhibit a similar shape; 

however, as the magnitude of acceleration increases, the curves shift to the right and the 

inclination increases, reflecting the impacts of acceleration on the effective vehicle length 

measurement accuracy. Figures 2.2 and 2.4b arise from the same specific choice of the 

acceleration profile. In general the acceleration profile cannot be measured from a dual 

loop detector and each vehicle likely chooses its own profile without regard to the 

average conditions used thus far in our analysis. Capturing the resulting measured 

effective vehicle lengths and speeds from all feasible accelerations, Figure 2.5 steps 

through acceleration magnitudes from 0 to 4 mphps and records all of the possible true 

vehicle classes observed at the given point on measured effective vehicle length and 

speed plane.3 The three shaded regions: ABHG, BCDH and GHEF, bound the measured 

speed and measured effective vehicle length pairs that could arise from vehicles of 

multiple true classes, namely: classes 1&2&3, 2&3, and 1&2, respectively. The 

remainder of the plane is un-shaded, denoting that in the absence of detector errors those 

measured speed and measured effective vehicle length pairs could only arise from a 

single true vehicle class. 

  

                                                
3 This figure includes constant acceleration with 𝑎 ≤ 4  𝑚𝑝ℎ𝑝𝑠, as well as non-constant acceleration and stopped 

vehicles with 𝑎𝑖 + 𝑎𝑗 ≤ 4  𝑚𝑝ℎ𝑝𝑠. 
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Figure 2.1. Acceleration distribution from all vehicles in the NGSIM I-80 dataset. 
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Figure 2.2. Vehicle classification boundaries for, (a) the constant speed model, (b) the 

constant acceleration model, (c) the non-constant acceleration model, and (d) the stop 

model. 
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Figure 2.3. Time series speed of an individual vehicle for (a) the non-constant 

acceleration model, (b) the stop model. 
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Figure 2.4. Theoretical uncertainty zones in the measured length and speed plane when 

acceleration is equal to (a) ±1 mphps, (b) ±2 mphps, and (c) ±4 mphps. 
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Figure 2.5. The length-based vehicle classification plane showing the uncertainty zones 

where errors in the measured length could lead to a misclassification if one only used the 

conventional constant speed boundaries. The numbers on this plot denote the vehicle 

classes that fall within the given area. 
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CHAPTER 3.  PERFORMANCE EVALUATION USING EMPIRICAL DATA 

There are very few publicly available, empirical datasets that include the 

necessary transition times (t1 to t4 in Figure 1.1) from dual loop detector data. There are 

even fewer datasets that include ground truth vehicle lengths for vehicles in stop-and-go 

traffic. To evaluate the length-based classification scheme we use two empirical data 

sources. The first empirical dataset is the NGSIM I-80 data mentioned above, from which 

we simulate a dual loop detector station and extract synthetic transition times from all of 

the passing vehicles. Since the NGSIM data includes the vehicle trajectories and vehicle 

lengths, the synthetic transition times capture the impacts of vehicle length, speed, and 

acceleration. From which, we can then measure the errors arising from the dual loop 

measurements (Equations 1 and 3). 

The second empirical dataset comes from an actual dual loop detector station, 

namely Station 8 in the Berkeley Highway Laboratory, BHL (Coifman et al., 2000). 

Unlike conventional practice, the BHL dual loop detector stations recorded the individual 

vehicle transition times, allowing for direct application of Equations 1 and 3 to the 

archived data. Meanwhile, BHL Station 8 has a small amount of data with concurrent 

ground truth vehicle lengths because it falls within the surveillance region of the NGSIM 

I-80 dataset. Although this station was off-line for most of the time that the NGSIM data 

were collected, there are about 12 minutes of BHL dual loop detector data with 

concurrent NGSIM ground truth vehicle lengths, and this period is used to evaluate the 

performance from the actual loop detector data.  
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3.1 Evaluation from NGSIM 

This section uses the NGSIM I-80 dataset to evaluate the classification scheme. 

We simulated a dual loop detector in each lane, with the leading edge of the upstream 

loop detector located at 1,000 ft in the NGSIM coordinate system. The detection zone 

size was set to 6 feet for each loop detector, with S = 20  ft. A total of 5,675 vehicles 

passed this location. Transition times t1 and t3 come directly from the NGSIM trajectory 

data as the vehicle passes the leading edge of each simulated loop detector, while 

transition times t2 and t4 come from a given vehicle's trajectory shifted upstream in space 

by the vehicle's physical length and the size of the detection zone. The raw NGSIM data 

are sampled at 10 Hz, and the resulting 1/10 sec uncertainty in the transition times would 

be much too large to calculate accurate vehicle speeds or effective vehicle lengths from 

Equations 1-3 at high speeds. So the 10 Hz trajectories are linearly interpolated to find 

the exact passage time. This approach ignores acceleration because its impact over 1/10 

sec should yield a positioning error less than 1/50 ft.4 The four synthetic transition times 

are then used to measure effective vehicle length and average measured speed for the 

given vehicle via Equations 1 and 3. The true effective vehicle length, Le, comes from the 

recorded NGSIM vehicle length plus the size of the detection zone (Wu and Coifman, in 

press). 

Figure 3.1a shows a scatterplot of the measured versus true effective vehicle 

length. The solid horizontal and vertical lines in the plot show the boundaries between 

adjacent conventional vehicle classes (as per Section 1.1) relative to the effective vehicle 

length. Different symbols are used to denote whether the given vehicle was correctly 

classified into a single class (points) or multiple classes (circles); or was incorrectly 

classified (cross). Figure 3.1b shows the cumulative distribution function (CDF) of the 

average measured speed at this detector location. With a median speed of 17 mph and 

80% of the speeds below 25 mph, there was considerable congestion, but as can be seen 

                                                
4 The distance traveled over 1/10 sec is relatively insensitive to acceleration at any speed, allowing us to use linear 

interpolation to find the synthetic transition times with high accuracy. On the other hand, when measuring speed or 
length from a dual loop detector, a low speed vehicle will be over the detector for many seconds, and given this long 
time period acceleration becomes significant. 
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in Figure 3.1a, most of the vehicles are already correctly classified using CM+ and the 

conventional constant speed boundaries, without making any accommodation for 

acceleration. 

Figure 3.2a plots the measured effective vehicle length (Equation 1) versus the 

measured speed (Equation 3) for each of these vehicles, sorted by the true vehicle class as 

denoted with the given marker symbol. Consistent with Figure 3.1a, most of these 

vehicles are already correctly classified using the constant speed boundaries shown with 

dashed horizontal lines. Superimposed on top of this plot are the uncertainty zones from 

Figure 2.5. Most of the vehicles falling in these uncertainty zones were already correctly 

classified using the constant speed boundaries; however, most of the vehicles that would 

have been misclassified using the constant speed boundaries also fall within these 

uncertainty zones. Figure 3.2b shows the one misclassification that remains after 

excluding all of the vehicles that were correctly classified either into a single class or to 

an uncertainty zone that included the correct class. Table 3.1 quantifies these results. The 

right-hand side shows the results using CM+ and the conventional constant speed 

boundaries: only seven vehicles are misclassified. These results are probably a little 

better than one would expect to see at a real detector station since the measurement 

process excluded the possibility of detector errors from occurring. For reference, Table 

3.2 repeats the evaluation using CM from Equation 2 and the conventional constant speed 

boundaries. The error rate increases to 34 misclassifications (0.6%). 

In any event, the left-hand side of Table 3.1 shows the results from CM+ after 

accounting for the uncertainty zones. A total of 58 vehicles (just over 1%) are assigned to 

two or more classes. The number of misclassified vehicles dropped to just 1 (improved 

by a factor of 7 over CM+ with the constant speed boundaries, and a factor of 34 over 

CM with the constant speed boundaries) when using the uncertainty zones. 

3.2 Evaluation from BHL 

The second empirical dataset used in this work comes from an actual dual loop 

detector station. Namely BHL Station 8, that was within the field of view of the NGSIM 
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I-80 dataset. There were about 12 minutes of Station 8 dual loop detector data with 

concurrent ground truth vehicle lengths from NGSIM.  

Initially the exact location of Station 8 relative to the NGSIM coordinate system 

was unknown beyond the fact that the detectors were upstream of the Powell St. on-ramp 

located at 420 ft in the NGSIM coordinate system. Likewise, the time offset between the 

two databases was unknown. So we relied upon a brute force, exhaustive search to find 

the best combination of spatial and temporal offsets. First we synthesized dual loop 

detector data in every lane from the NGSIM trajectories (as per the method in Section 

3.1). This extraction was repeated at many locations along the NGSIM coordinate 

system, stepping the location of the synthetic dual loop detectors by one foot increments 

between each successive trial. Using a window of ±3 min, each of these synthetic 

detector stations was compared to the actual dual loop detector data using the method 

from Lee and Coifman (in press) to find the temporal offset yielding the best correlation 

between the two data streams, independently in each lane. Then, using these temporal 

offsets, the location with the best overall correlation, 221 ft, was selected as the location 

of the actual detector station. 

The process of matching the loop data to NGSIM was complicated by the fact that 

NGSIM sometimes does a poor job tracking the vehicles, e.g., during stop waves it was 

often the case that one of the NGSIM trajectories would overrun the trajectory of the 

vehicle ahead of it, erroneously indicating that two vehicles occupied the same point in 

time and space. Meanwhile, the loop detectors also appear to exhibit splashover problems 

and all non-vehicle pulses due to splashover were excluded. So after correlating the 

spatial and temporal offsets between the two concurrent datasets, a second pass was made 

through to manually match the synthetic pulses to the real detector pulses. 

A total of 1,090 vehicles were seen in both datasets. To establish the size of the 

loop detection zone we took the difference between the measured effective vehicle length 

from the loops and the corresponding NGSIM reported physical length for the given 
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vehicle and calculated the average bias, which corresponded to a 7 ft detection zone.5 We 

also used the NGSIM synthetic transition data at the exact location of the actual loop 

detectors (first used to find the spatial and temporal offsets, noted above) and measured 

the effective vehicle length from the synthetic transition data to capture the impacts of 

vehicle acceleration. Here too, the bias between the loops and synthetic data 

corresponded to a 7 ft detection zone. For the remainder of the analysis the true effective 

vehicle length is set to the NGSIM reported physical length plus the 7 ft detection zone.  

Upon first comparing the loop data to the concurrent NGSIM measured effective 

vehicle lengths we found 16 miss-classifications using the measured effective vehicle 

lengths and constant speed boundaries. Reviewing these errors, we found six cases where 

the NGSIM effective vehicle length was close to one of the length boundaries and was 

measured incorrectly on the wrong side of the given boundary. We also found six cases 

of combined splashover (Lee and Coifman, 2012a) where the splashover event extended 

the duration of an otherwise valid vehicle actuation; thus, leading to a misclassification. 

Since the splashover errors and NGSIM length measurement errors are unrelated to the 

low speed conditions that are the focus of the present work, these 12 measurement errors 

were excluded from further analysis6, leaving four classification errors remaining under 

the constant speed boundaries. 

Figure 3.3 repeats the comparisons from Figure 3.1, only now applied to the 

actual loop detector data from BHL Station 8. Comparing the two figures, on average the 

speeds were higher at BHL Station 8, in part because it was towards the upstream end of 

the NGSIM segment and in part because it comes strictly from the first 15 minute period 

                                                
5 In general one does not normally know the size of the detection zone without using additional analysis, e.g., Lee and 

Coifman (2012b). With the BHL data we have the benefit of ground truth length data from NGSIM to eliminate the 
bias, thereby facilitating direct comparisons between the ground truth and measured lengths for the evaluation, and 
allowing us to achieve well tuned detectors for our analysis. The fact that the detection zone is larger than the 
physical loops is consistent with the fact that this station also exhibits splashover errors, both factors indicate that the 
detector sensitivity is set too high. 

6 Both the combined splashover events extending otherwise valid dwell times and the non-vehicle pulses arising from 
splashover are excluded from the evaluation because they are the result of poorly tuned loop detectors. These errors 
can be identified using the method in Lee and Coifman (2012a) and the detector station retuned. While we would 
prefer to work with a well tuned detector station for this evaluation, we only know of this one empirical data set that 
has both the necessary individual vehicle actuations from the loop detectors during congestion and the concurrent, 
independently measured ground truth vehicle lengths.  
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of the NGSIM I-80 dataset, which was the least congested of the three NGSIM time 

periods at I-80. 

Figure 3.4a plots the measured effective vehicle length versus the measured 

vehicle speed for each of these vehicles, sorted by the true vehicle class as denoted with 

the given marker symbol. Superimposed on top of this plot are the uncertainty zones from 

Figure 2.5. Figure 3.4b shows the one misclassification that remains after excluding all of 

the vehicles that were correctly classified either into a single class or to an uncertainty 

zone that included the correct class. Table 3.3 quantifies these results. The right-hand side 

shows the results using CM+ and the conventional constant speed boundaries: only four 

vehicles are misclassified. For reference, Table 3.4 repeats the evaluation using CM from 

Equation 2 and the conventional constant speed boundaries. The error rate increases to 5 

misclassifications (0.5%, and similar to the corresponding rate in Table 3.2). 

The left-hand side of Table 3.3 shows the results from CM+ after accounting for 

the uncertainty zones. The number of misclassified vehicles when using the uncertainty 

zones dropped to just one (improved by a factor of 4 over CM+ with the constant speed 

boundaries). A total of 12 vehicles (1.1%) are assigned to two or more classes in this 

case. 
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Table 3.1. Using the synthetic detectors from NGSIM at 1,000 ft, the left-hand side of 

this table compares the measured length class when including the uncertainty zones 

against the true length class. The right-hand side of this table repeats a comparison using 

only the conventional constant speed boundaries between classes. 
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Table 3.2. Repeating the analysis for CM using the synthetic detectors from NGSIM at 

1,000 ft, comparing the conventional constant speed boundaries between classes against 

the true length class. 

 
using the conventional constant speed boundaries 

1 2 3 # Errors Accuracy 

TR
U

E 1 5,440 25 1 26 99.5% 
2 0 76 3 3 96.2% 
3 0 5 125 5 96.2% 

Sum 5,440 106 129 34 total # veh 
5,675 Percent 95.9% 1.9% 2.3% 0.6% 

 
 

 
  



 

 

25 

Table 3.3. Using the real detector data from BHL loop detector Station 8, the left-hand 

side of this table compares the measured length class when including the uncertainty 

zones against the true length class. The right-hand side of this table repeats a comparison 

using only the conventional constant speed boundaries between classes. 
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Table 3.4. Repeating the analysis for CM using the real detector data from BHL loop 

detector Station 8 comparing the conventional constant speed boundaries between classes 

against the true length class. 

 
using the conventional constant speed boundaries 

1 2 3 # Errors Accuracy 

TR
U

E 1 1,024 3 0 3 99.7% 
2 1 18 1 2 90.0% 
3 0 0 31 0 100% 

Sum 1,025 21 32 5 total # veh 
1,078 Percent 95.1% 1.9% 3.0% 0.5% 
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Figure 3.1. (a) Scatter plot comparing the measured length and classification from the 

synthetic NGSIM detector data versus the true NGSIM length and class at the study 

location, (b) CDF of average measured speeds for the same vehicles. 
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Figure 3.2. (a) Vehicle classification using measured effective vehicle length versus 

measured speed for all of the NGSIM data at 1,000 ft, (b) repeating part a, but only 

showing the one misclassification that falls outside of the correct region or uncertainty 

zones. 
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Figure 3.3. (a) Scatter plot comparing the measured length and classification from the 

real BHL loop detector Station 8 data versus the corresponding true NGSIM length and 

class, (b) CDF of average measured speeds for the same vehicles. 
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Figure 3.4. (a) Vehicle classification using measured effective vehicle length versus 

measured speed for all of BHL loop detector Station 8 data, (b) repeating part a, but only 

showing the one misclassification that falls outside of the correct region or uncertainty 

zones. 
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CHAPTER 4.  DISCUSSION AND CONCLUSIONS 

Dual loop detectors are among the lowest cost technologies commonly used for 

collecting vehicle classification data. The conventional approach to classify vehicles at 

dual loop detectors implicitly assumes that vehicle acceleration is negligible; but 

unfortunately, at low speeds this assumption is invalid. As a result of this fact, many 

operating agencies are reluctant to deploy classification stations on roadways where 

traffic is frequently congested. 

This work sought to address the impacts of the unobserved acceleration on the 

measured length class. After calibration, the approach relies strictly on the measured 

effective vehicle length and measured speed at a conventional dual loop detector. To this 

end, the work established the uncertainty regions where the true vehicle class is 

ambiguous based on what can actually be measured from a dual loop detector. Using the 

equations of motion this work analytically derived the set of true vehicle lengths, speeds, 

and accelerations that could give rise to a particular combination of measured speed and 

measured effective vehicle length from Equations 1 and 3. Of course acceleration cannot 

be measured from conventional dual loop detectors and this analysis found that there are 

small uncertainty zones where the measured length class can differ from the true length 

class, depending on the unobserved acceleration. In other words, a given combination of 

measured speed and measured effective vehicle length falling in the uncertainty zones 

could arise from vehicles with different true length classes. In other words, the 

uncertainty zones capture the impacts of the unmeasured acceleration. Outside of the 

uncertainty zones, any error in the measured effective vehicle length due to acceleration 

will not lead to an error in the measured length class. Thus, by mapping these uncertainty 

zones, most vehicles can be accurately sorted to a single length class, while the few 

vehicles that fall within the uncertainty zones are assigned to two or more classes. Using 

empirical data from stop-and-go traffic we found that this new approach assigns over 
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98% of the vehicles to a single class, and reduces the classification error rate by at least a 

factor of four relative to the best conventional constant speed boundary method. 

Contrary to conventional wisdom we found that the conventional, constant speed 

boundaries performed surprisingly well down to 15 mph for both of the empirical 

evaluation datasets. First, recall that we use the best conventional method from Wu and 

Coifman (in press), CM+ (given by Equation 1). Meanwhile, Wu and Coifman found that 

the more common CM (given by Equation 2) yielded roughly twice the classification 

error rate than CM+. Next, as seen in Figure 2.1, almost 60% of the accelerations are 

within -1 mphps to 1 mphps; thus, the range of accelerations tended to be much closer to 

zero than was modeled in Figure 2.5. So for vehicles that did not come to a stop over the 

detectors, the constant speed boundaries were already a pretty good match, as shown in 

Figure 2.4a with the magnitude of acceleration limited to 1 mphps. Most of the 

classification errors that did occur using the constant speed boundaries fell within the 

uncertainty zones predicted by this work, as shown in Tables 1 and 3. As such, the 

greatest benefits of this work come at the lowest speeds, i.e., below 15 mph. Or 

alternatively, this work has shown that it is fairly safe to extend conventional length-

based dual loop detector vehicle classification down to 15 or 20 mph, provided the 

detectors are well tuned and one uses CM+ rather than CM (compare Table 3.2 to the 

right-hand side of Table 3.1). 

Comparing the performance from the uncertainty zones for the purely synthetic 

data derived from the NGSIM dataset against the performance from the real loop detector 

actuations from BHL Station 8 data we find that the error rate was higher in the real loop 

detector data even though speeds were also higher. We attribute this outcome to several 

factors. Both the synthetic data and the real loop detector data exhibited a single 

misclassification, the smallest non-zero error rate possible. Given the fact that the number 

of errors has to be an integer, the larger sample size in the synthetic data leads to a 

smaller error rate for the single error in the dataset. However, the synthetic data precludes 

the possibility of a detector error while the real data includes detector errors, so the 
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former should exhibit a slightly lower error rate, which is consistent with our observed 

error rates.  

In practice the biggest problems with length-based vehicle classification often are 

due to inoperable or malfunctioning detectors rather than the length-based measurement 

scheme. Which is why it is critically important to make sure the detectors are well tuned. 

To this end, it is important for an operating agency to follow an established protocol for 

calibration and to quantify the reliability of the classification system. It is equally 

important to have an ongoing performance monitoring in real-time to ensure the detectors 

remain well tuned, e.g., Coifman (1999), Lee and Coifman (2011, 2012a, 2012b). If a 

detector fails the real-time tests then the corresponding data are of questionable quality 

and the detector is in need of re-tuning. 

The uncertainty zone method presented in this work is meant to extend 

meaningful length-based vehicle classification to sites that see some congestion. 

Reviewing the different subplots in Figures 2.2c-d, clearly the stop case and even some of 

the low speed, non-constant acceleration cases can yield very large errors in the measured 

effective vehicle lengths. Fortunately, these errors are somewhat rare for several reasons, 

first, very few vehicles actually pass the dual loop detector at these low speeds, since the 

lower the speed the lower the flow and the lower the flow the fewer vehicles actually pass 

a detector. Second, Figure 2.2 shows the errors from the worst case scenario, e.g., the 

vehicle comes to a stop straddling both loop detectors. If the vehicle stops a few feet 

further upstream or downstream of this location, straddling just one of the detectors, Wu 

and Coifman (in press) showed that Equation 1 would yield a much lower effective 

vehicle length measurement error and this property is the primary reason why CM+ does 

better than CM. Third, as shown in Figure 2.5, the uncertainty zones only impact 

measured effective vehicle lengths above 26 ft. There is no uncertainty for any vehicles 

with a measured effective vehicle length below the zones, no matter how low the 

measured speed is. As evident in Figures 3.2a and 3.4a, the vast majority of vehicles at 

these sites are passenger cars, with measured effective vehicle lengths falling below all of 

the uncertainty zones. Meanwhile, for a measured speed below 8 mph, Figure 2.5 shows 
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that almost all measured effective vehicle lengths above 26 ft will fall in the uncertainty 

zones. 

The boundaries of the uncertainty zones in Figure 2.5 were derived heuristically 

in Section 2 for a specific set of length class bins and the given dual loop spacing. The 

present work seeks to demonstrate just how small the uncertainty zones are. It is left to 

future work to derive a universal expression to specify the uncertainty zone boundaries 

for different length bins or dual loop detector spacing. Although we found slightly higher 

error rates when using the real loop detector data than the purely synthetic data, the 

difference was very small, i.e., the performance from the NGSIM synthetic transition 

times was similar to those from the well tuned loop detectors at BHL Station 8. So for 

some other set of length bins and dual loop spacing, one could simply repeat the analysis 

of Section 2 and then evaluate the results strictly using the NGSIM data, i.e., repeating 

Section 3.1. While our work only used the NGSIM I-80 dataset due to the overlap with 

the BHL, there is a second NGSIM freeway dataset from US-101 that could also be used. 

In either case, the NGSIM data come from urban freeways with the majority of vehicles 

being passenger cars. Fortunately, the classification of one vehicle is independent of the 

classification of another vehicle at a well tuned detector. So if one were interested strictly 

in the longer vehicles, one could simply discount the class 1 vehicles in Figures 3.2a and 

3.4a, and Tables 1 and 3. To increase the proportion of observations arising from long 

vehicles, the simulated loop detectors could be deployed at multiple locations along one 

of the NGSIM corridors to generate the synthetic transition data in an effort to sample the 

limited number of trucks under different acceleration conditions. 
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